Technology should bring people closer together, not create walls. Being able to communicate and connect with friends and family should be easy regardless of the phone they use. That’s why Android has been building experiences that help you stay connected across platforms.

As part of our efforts to continue to make cross-platform communication more seamless for users, we’ve made Quick Share interoperable with AirDrop, allowing for two-way file sharing between Android and iOS devices, starting with the Pixel 10 Family. This new feature makes it possible to quickly share your photos, videos, and files with people you choose to communicate with, without worrying about the kind of phone they use.

Most importantly, when you share personal files and content, you need to trust that it stays secure. You can share across devices with confidence knowing we built this feature with security at its core, protecting your data with strong safeguards that have been tested by independent security experts.

Secure by Design

We built Quick Share’s interoperability support for AirDrop with the same rigorous security standards that we apply to all Google products. Our approach to security is proactive and deeply integrated into every stage of the development process. This includes:

  • Threat Modeling: We identify and address potential security risks before they can become a problem.
  • Internal Security Design and Privacy Reviews: Our dedicated security and privacy teams thoroughly review the design to ensure it meets our high standards.
  • Internal Penetration Testing: We conduct extensive in-house testing to identify and fix vulnerabilities.

This Secure by Design philosophy ensures that all of our products are not just functional but also fundamentally secure.

This feature is also protected by a multi-layered security approach to ensure a safe sharing experience from end-to-end, regardless of what platform you’re on.

  • Secure Sharing Channel: The communication channel itself is hardened by our use of Rust to develop this feature. This memory-safe language is the industry benchmark for building secure systems and provides confidence that the connection is protected against buffer overflow attacks and other common vulnerabilities.
  • Built-in Platform Protections: This feature is strengthened by the robust built-in security of both Android and iOS. On Android, security is built in at every layer. Our deep investment in Rust at the OS level hardens the foundation, while proactive defenses like Google Play Protect work to keep your device safe. This is complemented by the security architecture of iOS that provides its own strong safeguards that mitigate malicious files and exploitation. These overlapping protections on both platforms work in concert with the secure connection to provide comprehensive safety for your data when you share or receive.
  • You’re in Control: Sharing across platforms works just like you’re used to: a file requires your approval before being received, so you’re in control of what you accept.

The Power of Rust: A Foundation of Secure Communication

A key element of our security strategy for the interoperability layer between Quick Share and AirDrop is the use of the memory-safe Rust programming language. Recognized by security agencies around the world, including the NSA and CISA, Rust is widely considered the industry benchmark for building secure systems because it eliminates entire classes of memory-safety vulnerabilities by design.

Rust is already a cornerstone of our broader initiative to eliminate memory safety bugs across Android. Its selection for this feature was deliberate, driven by the unique security challenges of cross-platform communication that demanded the most robust protections for memory safety.

The core of this feature involves receiving and parsing data sent over a wireless protocol from another device. Historically, when using a memory-unsafe language, bugs in data parsing logic are one of the most common sources of high-severity security vulnerabilities. A malformed data packet sent to a parser written in a memory-unsafe language can lead to buffer overflows and other memory corruption bugs, creating an opportunity for code execution.

This is precisely where Rust provides a robust defense. Its compiler enforces strict ownership and borrowing rules at compile time, which guarantees memory safety. Rust removes entire classes of memory-related bugs. This means our implementation is inherently resilient against attackers attempting to use maliciously crafted data packets to exploit memory errors.

Secure Sharing Using AirDrop’s “Everyone” Mode

To ensure a seamless experience for both Android and iOS users, Quick Share currently works with AirDrop’s “Everyone for 10 minutes” mode. This feature does not use a workaround; the connection is direct and peer-to-peer, meaning your data is never routed through a server, shared content is never logged, and no extra data is shared. As with “Everyone for 10 minutes” mode on any device when you’re sharing between non-contacts, you can ensure you’re sharing with the right person by confirming their device name on your screen with them in person.

This implementation using “Everyone for 10 minutes” mode is just the first step in seamless cross-platform sharing, and we welcome the opportunity to work with Apple to enable “Contacts Only” mode in the future.

Tested by Independent Security Experts

After conducting our own secure product development, internal threat modeling, privacy reviews, and red team penetration tests, we engaged with NetSPI, a leading third-party penetration testing firm, to further validate the security of this feature and conduct an independent security assessment. The assessment found the interoperability between Quick Share and AirDrop is secure, is “notably stronger” than other industry implementations and does not leak any information.

Based on these internal and external assessments, we believe our implementation provides a strong security foundation for cross-platform file sharing for both Android and iOS users. We will continue to evaluate and enhance the implementation’s security in collaboration with additional third-party partners.

To complement this deep technical audit, we also sought expert third-party perspective on our approach from Dan Boneh, a renowned security expert and professor at Stanford University:

“Google’s work on this feature, including the use of memory safe Rust for the core communications layer, is a strong example of how to build secure interoperability, ensuring that cross-platform information sharing remains safe. I applaud the effort to open more secure information sharing between platforms and encourage Google and Apple to work together more on this.”

The Future of File-Sharing Should Be Interoperable

This is just the first step as we work to improve the experience and expand it to more devices. We look forward to continuing to work with industry partners to make connecting and communicating across platforms a secure, seamless experience for all users.

Last year, we wrote about why a memory safety strategy that focuses on vulnerability prevention in new code quickly yields durable and compounding gains. This year we look at how this approach isn’t just fixing things, but helping us move faster.

The 2025 data continues to validate the approach, with memory safety vulnerabilities falling below 20% of total vulnerabilities for the first time.

Updated data for 2025. This data covers first-party and third-party (open source) code changes to the Android platform across C, C++, Java, Kotlin, and Rust. This post is published a couple of months before the end of 2025, but Android’s industry-standard 90-day patch window means that these results are very likely close to final. We can and will accelerate patching when necessary.

We adopted Rust for its security and are seeing a 1000x reduction in memory safety vulnerability density compared to Android’s C and C++ code. But the biggest surprise was Rust’s impact on software delivery. With Rust changes having a 4x lower rollback rate and spending 25% less time in code review, the safer path is now also the faster one.

In this post, we dig into the data behind this shift and also cover:

  • How we’re expanding our reach: We’re pushing to make secure code the default across our entire software stack. We have updates on Rust adoption in first-party apps, the Linux kernel, and firmware.
  • Our first rust memory safety vulnerability…almost: We’ll analyze a near-miss memory safety bug in unsafe Rust: how it happened, how it was mitigated, and steps we’re taking to prevent recurrence. It’s also a good chance to answer the question “if Rust can have memory safety issues, why bother at all?”

Building Better Software, Faster

Developing an operating system requires the low-level control and predictability of systems programming languages like C, C++, and Rust. While Java and Kotlin are important for Android platform development, their role is complementary to the systems languages rather than interchangeable. We introduced Rust into Android as a direct alternative to C and C++, offering a similar level of control but without many of their risks. We focus this analysis on new and actively developed code because our data shows this to be an effective approach.

When we look at development in systems languages (excluding Java and Kotlin), two trends emerge: a steep rise in Rust usage and a slower but steady decline in new C++.

Net lines of code added: Rust vs. C++, first-party Android code.
This chart focuses on first-party (Google-developed) code (unlike the previous chart that included all first-party and third-party code in Android.) We only include systems languages, C/C++ (which is primarily C++), and Rust.

The chart shows that the volume of new Rust code now rivals that of C++, enabling reliable comparisons of software development process metrics. To measure this, we use the DORA1 framework, a decade-long research program that has become the industry standard for evaluating software engineering team performance. DORA metrics focus on:

  • Throughput: the velocity of delivering software changes.
  • Stability: the quality of those changes.

Cross-language comparisons can be challenging. We use several techniques to ensure the comparisons are reliable.

  • Similar sized changes: Rust and C++ have similar functionality density, though Rust is slightly denser. This difference favors C++, but the comparison is still valid. We use Gerrit’s change size definitions.
  • Similar developer pools: We only consider first-party changes from Android platform developers. Most are software engineers at Google, and there is considerable overlap between pools with many contributing in both.
  • Track trends over time: As Rust adoption increases, are metrics changing steadily, accelerating the pace, or reverting to the mean?

Throughput

Code review is a time-consuming and high-latency part of the development process. Reworking code is a primary source of these costly delays. Data shows that Rust code requires fewer revisions. This trend has been consistent since 2023. Rust changes of a similar size need about 20% fewer revisions than their C++ counterparts.

In addition, Rust changes currently spend about 25% less time in code review compared to C++. We speculate that the significant change in favor of Rust between 2023 and 2024 is due to increased Rust expertise on the Android team.

While less rework and faster code reviews offer modest productivity gains, the most significant improvements are in the stability and quality of the changes.

Stability

Stable and high-quality changes differentiate Rust. DORA uses rollback rate for evaluating change stability. Rust’s rollback rate is very low and continues to decrease, even as its adoption in Android surpasses C++.

For medium and large changes, the rollback rate of Rust changes in Android is ~4x lower than C++. This low rollback rate doesn’t just indicate stability; it actively improves overall development throughput. Rollbacks are highly disruptive to productivity, introducing organizational friction and mobilizing resources far beyond the developer who submitted the faulty change. Rollbacks necessitate rework and more code reviews, can also lead to build respins, postmortems, and blockage of other teams. Resulting postmortems often introduce new safeguards that add even more development overhead.

In a self-reported survey from 2022, Google software engineers reported that Rust is both easier to review and more likely to be correct. The hard data on rollback rates and review times validates those impressions.

Putting it all together

Historically, security improvements often came at a cost. More security meant more process, slower performance, or delayed features, forcing trade-offs between security and other product goals. The shift to Rust is different: we are significantly improving security and key development efficiency and product stability metrics.

Expanding Our Reach

With Rust support now mature for building Android system services and libraries, we are focused on bringing its security and productivity advantages elsewhere.

  • Kernel: Android’s 6.12 Linux kernel is our first kernel with Rust support enabled and our first production Rust driver. More exciting projects are underway, such as our ongoing collaboration with Arm and Collabora on a Rust-based kernel-mode GPU driver.
  • Firmware: The combination of high privilege, performance constraints, and limited applicability of many security measures makes firmware both high-risk, and challenging to secure. Moving firmware to Rust can yield a major improvement in security. We have been deploying Rust in firmware for years now, and even released tutorials, training, and code for the wider community. We’re particularly excited about our collaboration with Arm on Rusted Firmware-A.
  • First-party applications: Rust is ensuring memory safety from the ground up in several security-critical Google applications, such as:
    • Nearby Presence: The protocol for securely and privately discovering local devices over Bluetooth is implemented in Rust and is currently running in Google Play Services.
    • MLS: The protocol for secure RCS messaging is implemented in Rust and will be included in the Google Messages app in a future release.
    • Chromium: Parsers for PNG, JSON, and web fonts have been replaced with memory-safe implementations in Rust, making it easier for Chromium engineers to deal with data from the web while following the Rule of 2.


These examples highlight Rust’s role in reducing security risks, but memory-safe languages are only one part of a comprehensive memory safety strategy. We continue to employ a defense-in-depth approach, the value of which was clearly demonstrated in a recent near-miss.

Our First Rust Memory Safety Vulnerability…Almost

We recently avoided shipping our very first Rust-based memory safety vulnerability: a linear buffer overflow in CrabbyAVIF. It was a near-miss. To ensure the patch received high priority and was tracked through release channels, we assigned it the identifier CVE-2025-48530. While it’s great that the vulnerability never made it into a public release, the near-miss offers valuable lessons. The following sections highlight key takeaways from our postmortem.

Scudo Hardened Allocator for the Win

A key finding is that Android’s Scudo hardened allocator deterministically rendered this vulnerability non-exploitable due to guard pages surrounding secondary allocations. While Scudo is Android’s default allocator, used on Google Pixel and many other devices, we continue to work with partners to make it mandatory. In the meantime, we will issue CVEs of sufficient severity for vulnerabilities that could be prevented by Scudo.

In addition to protecting against overflows, Scudo’s use of guard pages helped identify this issue by changing an overflow from silent memory corruption into a noisy crash. However, we did discover a gap in our crash reporting: it failed to clearly show that the crash was a result of an overflow, which slowed down triage and response. This has been fixed, and we now have a clear signal when overflows occur into Scudo guard pages.

Unsafe Review and Training

Operating system development requires unsafe code, typically C, C++, or unsafe Rust (for example, for FFI and interacting with hardware), so simply banning unsafe code is not workable. When developers must use unsafe, they should understand how to do so soundly and responsibly

To that end, we are adding a new deep dive on unsafe code to our Comprehensive Rust training. This new module, currently in development, aims to teach developers how to reason about unsafe Rust code, soundness and undefined behavior, as well as best practices like safety comments and encapsulating unsafe code in safe abstractions.

Better understanding of unsafe Rust will lead to even higher quality and more secure code across the open source software ecosystem and within Android. As we’ll discuss in the next section, our unsafe Rust is already really quite safe. It’s exciting to consider just how high the bar can go.

Comparing Vulnerability Densities

This near-miss inevitably raises the question: “If Rust can have memory safety vulnerabilities, then what’s the point?”

The point is that the density is drastically lower. So much lower that it represents a major shift in security posture. Based on our near-miss, we can make a conservative estimate. With roughly 5 million lines of Rust in the Android platform and one potential memory safety vulnerability found (and fixed pre-release), our estimated vulnerability density for Rust is 0.2 vuln per 1 million lines (MLOC).

Our historical data for C and C++ shows a density of closer to 1,000 memory safety vulnerabilities per MLOC. Our Rust code is currently tracking at a density orders of magnitude lower: a more than 1000x reduction.

Memory safety rightfully receives significant focus because the vulnerability class is uniquely powerful and (historically) highly prevalent. High vulnerability density undermines otherwise solid security design because these flaws can be chained to bypass defenses, including those specifically targeting memory safety exploits. Significantly lowering vulnerability density does not just reduce the number of bugs; it dramatically boosts the effectiveness of our entire security architecture.

The primary security concern regarding Rust generally centers on the approximately 4% of code written within unsafe{} blocks. This subset of Rust has fueled significant speculation, misconceptions, and even theories that unsafe Rust might be more buggy than C. Empirical evidence shows this to be quite wrong.

Our data indicates that even a more conservative assumption, that a line of unsafe Rust is as likely to have a bug as a line of C or C++, significantly overestimates the risk of unsafe Rust. We don’t know for sure why this is the case, but there are likely several contributing factors:

  • unsafe{} doesn’t actually disable all or even most of Rust’s safety checks (a common misconception).
  • The practice of encapsulation enables local reasoning about safety invariants.
  • The additional scrutiny that unsafe{} blocks receive.

Final Thoughts

Historically, we had to accept a trade-off: mitigating the risks of memory safety defects required substantial investments in static analysis, runtime mitigations, sandboxing, and reactive patching. This approach attempted to move fast and then pick up the pieces afterwards. These layered protections were essential, but they came at a high cost to performance and developer productivity, while still providing insufficient assurance.

While C and C++ will persist, and both software and hardware safety mechanisms remain critical for layered defense, the transition to Rust is a different approach where the more secure path is also demonstrably more efficient. Instead of moving fast and then later fixing the mess, we can move faster while fixing things. And who knows, as our code gets increasingly safe, perhaps we can start to reclaim even more of that performance and productivity that we exchanged for security, all while also improving security.

Acknowledgments

Thank you to the following individuals for their contributions to this post:

  • Ivan Lozano for compiling the detailed postmortem on CVE-2025-48530.
  • Chris Ferris for validating the postmortem’s findings and improving Scudo’s crash handling as a result.
  • Dmytro Hrybenko for leading the effort to develop training for unsafe Rust and for providing extensive feedback on this post.
  • Alex Rebert and Lars Bergstrom for their valuable suggestions and extensive feedback on this post.
  • Peter Slatala, Matthew Riley, and Marshall Pierce for providing information on some of the places where Rust is being used in Google’s apps.

Finally, a tremendous thank you to the Android Rust team, and the entire Android organization for your relentless commitment to engineering excellence and continuous improvement.

Notes


  1. The DevOps Research and Assessment (DORA) program is published by Google Cloud. 

As Cybersecurity Awareness Month wraps up, we’re focusing on one of today’s most pervasive digital threats: mobile scams. In the last 12 months, fraudsters have used advanced AI tools to create more convincing schemes, resulting in over $400 billion in stolen funds globally.¹

For years, Android has been on the frontlines in the battle against scammers, using the best of Google AI to build proactive, multi-layered protections that can anticipate and block scams before they reach you. Android’s scam defenses protect users around the world from over 10 billion suspected malicious calls and messages every month2. In addition, Google continuously performs safety checks to maintain the integrity of the RCS service. In the past month alone, this ongoing process blocked over 100 million suspicious numbers from using RCS, stopping potential scams before they could even be sent.

To show how our scam protections work in the real world, we asked users and independent security experts to compare how well Android and iOS protect you from these threats. We’re also releasing a new report that explains how modern text scams are orchestrated, helping you understand the tactics fraudsters use and how to spot them.

Survey shows Android users’ confidence in scam protections

Google and YouGov3 surveyed 5,000 smartphone users across the U.S., India, and Brazil about their experiences. The findings were clear: Android users reported receiving fewer scam texts and felt more confident that their device was keeping them safe.

  • Android users were 58% more likely than iOS users to say they had not received any scam texts in the week prior to the survey. The advantage was even stronger on Pixel, where users were 96% more likely than iPhone owners to report zero scam texts.
  • At the other end of the spectrum, iOS users were 65% more likely than Android users to report receiving three or more scam texts in a week. The difference became even more pronounced when comparing iPhone to Pixel, with iPhone users 136% more likely to say they had received a heavy volume of scam messages.
  • Android users were 20% more likely than iOS users to describe their device’s scam protections as “very effective” or “extremely effective.” When comparing Pixel to iPhone, iPhone users were 150% more likely to say their device was not effective at all in stopping mobile fraud.

YouGov study findings on users’ experience with scams on Android and iOS

Security researchers and analysts highlight Android’s AI-driven safeguards against sophisticated scams

In a recent evaluation by Counterpoint Research4, a global technology market research firm, Android smartphones were found to have the most AI-powered protections. The independent study compared the latest Pixel, Samsung, Motorola, and iPhone devices, and found that Android provides comprehensive AI-driven safeguards across ten key protection areas, including email protections, browsing protections, and on-device behavioral protections. By contrast, iOS offered AI-powered protections in only two categories. You can see the full comparison in the visual below.

Counterpoint Research comparison of Android and iOS AI-powered protections

Cybersecurity firm Leviathan Security Group conducted a funded evaluation5 of scam and fraud protection on the iPhone 17, Moto Razr+ 2025, Pixel 10 Pro, and Samsung Galaxy Z Fold 7. Their analysis found that Android smartphones, led by the Pixel 10 Pro, provide the highest level of default scam and fraud protection.The report particularly noted Android’s robust call screening, scam detection, and real-time scam warning authentication capabilities as key differentiators. Taken together, these independent expert assessments conclude that Android’s AI-driven safeguards provide more comprehensive and intelligent protection against mobile scams.

Leviathan Security Group comparison of scam protections across various devices

Why Android users see fewer scams

Android’s proactive protections work across the platform to help you stay ahead of threats with the best of Google AI.

Here’s how they work:

  • Keeping your messages safe: Google Messages automatically filters known spam by analyzing sender reputation and message content, moving suspicious texts directly to your “spam & blocked” folder to keep them out of sight. For more complex threats, Scam Detection uses on-device AI to analyze messages from unknown senders for patterns of conversational scams (like pig butchering) and provide real-time warnings6. This helps secure your privacy while providing a robust shield against text scams. As an extra safeguard, Google Messages also helps block suspicious links in messages that are determined to be spam or scams.
  • Combatting phone call scams: Phone by Google automatically blocks known spam calls so your phone never even rings, while Call Screen5 can answer the call on your behalf to identify fraudsters. If you answer, the protection continues with Scam Detection, which uses on-device AI to provide real-time warnings for suspicious conversational patterns6. This processing is completely ephemeral, meaning no call content is ever saved or leaves your device. Android also helps stop social engineering during the call itself by blocking high-risk actions6 like installing untrusted apps or disabling security settings, and warns you if your screen is being shared unknowingly.

These safeguards are built directly into the core of Android, alongside other features like real-time app scanning in Google Play Protect and enhanced Safe Browsing in Chrome using LLMs. With Android, you can trust that you have intelligent, multi-layered protection against scams working for you.

Android is always evolving to keep you one step ahead of scams

In a world of evolving digital threats, you deserve to feel confident that your phone is keeping you safe. That’s why we use the best of Google AI to build intelligent protections that are always improving and work for you around the clock, so you can connect, browse, and communicate with peace of mind.

See these protections in action in our new infographic and learn more about phone call scams in our 2025 Phone by Google Scam Report.


1: Data from Global Anti-Scam Alliance, October 2025

2: This total comprises all instances where a message or call was proactively blocked or where a user was alerted to potential spam or scam activity.

3: Google/YouGov survey, July-August 2025; n=5,100 across US, IN, BR

4: Google/Counterpoint Research, “Assessing the State of AI-Powered Mobile Security”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy S25 Ultra, OnePlus 13, Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries.

5. Google/Leviathan Security Group, “October 2025 Mobile Platform Security & Fraud Prevention Assessment”, Oct. 2025; based on comparing the Pixel 10 Pro, iPhone 17 Pro, Samsung Galaxy Z Fold 7 and Motorola Razr+ 2025. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries.

6. Accuracy may vary. Availability varies.

Google has been at the forefront of protecting users from the ever-growing threat of scams and fraud with cutting-edge technologies and security expertise for years. In 2024, scammers used increasingly sophisticated tactics and generative AI-powered tools to steal more than $1 trillion from mobile consumers globally, according to the Global Anti-Scam Alliance. And with the majority of scams now delivered through phone calls and text messages, we’ve been focused on making Android’s safeguards even more intelligent with powerful Google AI to help keep your financial information and data safe.

Today, we’re launching two new industry-leading AI-powered scam detection features for calls and text messages, designed to protect users from increasingly complex and damaging scams. These features specifically target conversational scams, which can often appear initially harmless before evolving into harmful situations.

To enhance our detection capabilities, we partnered with financial institutions around the world to better understand the latest advanced and most common scams their customers are facing. For example, users are experiencing more conversational text scams that begin innocently, but gradually manipulate victims into sharing sensitive data, handing over funds, or switching to other messaging apps. And more phone calling scammers are using spoofing techniques to hide their real numbers and pretend to be trusted companies.

Traditional spam protections are focused on protecting users before the conversation starts, and are less effective against these latest tactics from scammers that turn dangerous mid-conversation and use social engineering techniques. To better protect users, we invested in new, intelligent AI models capable of detecting suspicious patterns and delivering real-time warnings over the course of a conversation, all while prioritizing user privacy.

Scam Detection for messages

We’re building on our enhancements to existing Spam Protection in Google Messages that strengthen defenses against job and delivery scams, which are continuing to roll out to users. We’re now introducing Scam Detection to detect a wider range of fraudulent activities.

Scam Detection in Google Messages uses powerful Google AI to proactively address conversational scams by providing real-time detection even after initial messages are received. When the on-device AI detects a suspicious pattern in SMS, MMS, and RCS messages, users will now get a message warning of a likely scam with an option to dismiss or report and block the sender.

As part of the Spam Protection setting, Scam Detection on Google Messages is on by default and only applies to conversations with non-contacts. Your privacy is protected with Scam Detection in Google Messages, with all message processing remaining on-device. Your conversations remain private to you; if you choose to report a conversation to help reduce widespread spam, only sender details and recent messages with that sender are shared with Google and carriers. You can turn off Spam Protection, which includes Scam Detection, in your Google Messages at any time.

Scam Detection in Google Messages is launching in English first in the U.S., U.K. and Canada and will expand to more countries soon.

Scam Detection for calls

More than half of Americans reported receiving at least one scam call per day in 2024. To combat the rise of sophisticated conversational scams that deceive victims over the course of a phone call, we introduced Scam Detection late last year to U.S.-based English-speaking Phone by Google public beta users on Pixel phones.

We use AI models processed on-device to analyze conversations in real-time and warn users of potential scams. If a caller, for example, tries to get you to provide payment via gift cards to complete a delivery, Scam Detection will alert you through audio and haptic notifications and display a warning on your phone that the call may be a scam.

During our limited beta, we analyzed calls with Gemini Nano, Google’s built-in, on-device foundation model, on Pixel 9 devices and used smaller, robust on-device machine-learning models for Pixel 6+ users. Our testing showed that Gemini Nano outperformed other models, so as a result, we’re currently expanding the availability of the beta to bring the most capable Scam Detection to all English-speaking Pixel 9+ users in the U.S.

Similar to Scam Detection in messaging, we built this feature to protect your privacy by processing everything on-device. Call audio is processed ephemerally and no conversation audio or transcription is recorded, stored on the device, or sent to Google or third parties. Scam Detection in Phone by Google is off by default to give users control over this feature, as phone call audio is more ephemeral compared to messages, which are stored on devices. Scam Detection only applies to calls that could potentially be scams, and is never used during calls with your contacts. If enabled, Scam Detection will beep at the start and during the call to notify participants the feature is on. You can turn off Scam Detection at any time, during an individual call or for all future calls.

According to our research and a Scam Detection beta user survey, these types of alerts have already helped people be more cautious on the phone, detect suspicious activity, and avoid falling victim to conversational scams.

Keeping Android users safe with the power of Google AI

We’re committed to keeping Android users safe, and that means constantly evolving our defenses against increasingly sophisticated scams and fraud. Our investment in intelligent protection is having real-world impact for billions of users. Leviathan Security Group, a cybersecurity firm, conducted a funded evaluation of fraud protection features on a number of smartphones and found that Android smartphones, led by the Pixel 9 Pro, scored highest for built-in security features and anti-fraud efficacy1.

With AI-powered innovations like Scam Detection in Messages and Phone by Google, we’re giving you more tools to stay one step ahead of bad actors. We’re constantly working with our partners across the Android ecosystem to help bring new security features to even more users. Together, we’re always working to keep you safe on Android.

Notes


  1. Based on third-party research funded by Google LLC in Feb 2025 comparing the Pixel 9 Pro, iPhone 16 Pro, Samsung S24+ and Xiaomi 14 Ultra. Evaluation based on no-cost smartphone features enabled by default. Some features may not be available in all countries. 

Android and Google Play comprise a vibrant ecosystem with billions of users around the globe and millions of helpful apps. Keeping this ecosystem safe for users and developers remains our top priority. However, like any flourishing ecosystem, it also attracts its share of bad actors. That’s why every year, we continue to invest in more ways to protect our community and fight bad actors, so users can trust the apps they download from Google Play and developers can build thriving businesses.

Last year, those investments included AI-powered threat detection, stronger privacy policies, supercharged developer tools, new industry-wide alliances, and more. As a result, we prevented 2.36 million policy-violating apps from being published on Google Play and banned more than 158,000 bad developer accounts that attempted to publish harmful apps.

But that was just the start. For more, take a look at our recent highlights from 2024:

Google’s advanced AI: helping make Google Play a safer place

To keep out bad actors, we have always used a combination of human security experts and the latest threat-detection technology. In 2024, we used Google’s advanced AI to improve our systems’ ability to proactively identify malware, enabling us to detect and block bad apps more effectively. It also helps us streamline review processes for developers with a proven track record of policy compliance. Today, over 92% of our human reviews for harmful apps are AI-assisted, allowing us to take quicker and more accurate action to help prevent harmful apps from becoming available on Google Play.

That’s enabled us to stop more bad apps than ever from reaching users through the Play Store, protecting users from harmful or malicious apps before they can cause any damage.

Working with developers to enhance security and privacy on Google Play

To protect user privacy, we’re working with developers to reduce unnecessary access to sensitive data. In 2024, we prevented 1.3 million apps from getting excessive or unnecessary access to sensitive user data. We also required apps to be more transparent about how they handle user information by launching new developer requirements and a new “Data deletion” option for apps that support user accounts and data collection. This helps users manage their app data and understand the app’s deletion practices, making it easier for Play users to delete data collected from third-party apps.

We also worked to ensure that apps use the strongest and most up-to-date privacy and security capabilities Android has to offer. Every new version of Android introduces new security and privacy features, and we encourage developers to embrace these advancements as soon as possible. As a result of partnering closely with developers, over 91% of app installs on the Google Play Store now use the latest protections of Android 13 or newer.

Safeguarding apps from scams and fraud is an ongoing battle for developers. The Play Integrity API allows developers to check if their apps have been tampered with or are running in potentially compromised environments, helping them to prevent abuse like fraud, bots, cheating, and data theft. Play Integrity API and Play’s automatic protection helps developers ensure that users are using the official Play version of their app with the latest security updates. Apps using Play integrity features are seeing 80% lower usage from unverified and untrusted sources on average.

We’re also constantly working to improve the safety of apps on Play at scale, such as with the Google Play SDK Index. This tool offers insights and data to help developers make more informed decisions about the safety of an SDK. Last year, in addition to adding 80 SDKs to the index, we also worked closely with SDK and app developers to address potential SDK security and privacy issues, helping to build safer and more secure apps for Google Play.

Google Play’s multi-layered protections against bad apps

To create a trusted experience for everyone on Google Play, we use our SAFE principles as a guide, incorporating multi-layered protections that are always evolving to help keep Google Play safe. These protections start with the developers themselves, who play a crucial role in building secure apps. We provide developers with best-in-class tools, best practices, and on-demand training resources for building safe, high-quality apps. Every app undergoes rigorous review and testing, with only approved apps allowed to appear in the Play Store. Before a user downloads an app from Play, users can explore its user reviews, ratings, and Data safety section on Google Play to help them make an informed decision. And once installed, Google Play Protect, Android’s built-in security protection, helps to shield their Android device by continuously scanning for malicious app behavior.

Enhancing Google Play Protect to help keep users safe on Android

While the Play Store offers best-in-class security, we know it’s not the only place users download Android apps – so it’s important that we also defend Android users from more generalized mobile threats. To do this in an open ecosystem, we’ve invested in sophisticated, real-time defenses that protect against scams, malware, and abusive apps. These intelligent security measures help to keep users, user data, and devices safe, even if apps are installed from various sources with varying levels of security.


Google Play Protect automatically scans every app on Android devices with Google Play Services, no matter the download source. This built-in protection, enabled by default, provides crucial security against malware and unwanted software. Google Play Protect scans more than 200 billion apps daily and performs real-time scanning at the code-level on novel apps to combat emerging and hidden threats, like polymorphic malware. In 2024, Google Play Protect’s real-time scanning identified more than 13 million new malicious apps from outside Google Play1.

Google Play Protect is always evolving to combat new threats and protect users from harmful apps that can lead to scams and fraud. Here are some of the new improvements that are now available globally on Android devices with Google Play Services:

  • Reminder notifications in Chrome on Android to re-enable Google Play Protect: According to our research, more than 95 percent of app installations from major malware families that exploit sensitive permissions highly correlated to financial fraud came from Internet-sideloading sources like web browsers, messaging apps, or file managers. To help users stay protected when browsing the web, Chrome will now display a reminder notification to re-enable Google Play Protect if it has been turned off.
  • Additional protection against social engineering attacks: Scammers may manipulate users into disabling Play Protect during calls to download malicious Internet-sideloaded apps. To prevent this, the Play Protect app scanning toggle is now temporarily disabled during phone or video calls. This safeguard is enabled by default during traditional phone calls as well as during voice and video calls in popular third-party apps.
  • Automatically revoking app permissions for potentially dangerous apps: Since Android 11, we’ve taken a proactive approach to data privacy by automatically resetting permissions for apps that users haven’t used in a while. This ensures apps can only access the data they truly need, and users can always grant permissions back if necessary. To further enhance security, Play Protect now automatically revokes permissions for potentially harmful apps, limiting their access to sensitive data like storage, photos, and camera. Users can restore app permissions at any time, with a confirmation step for added security.

Google Play Protect’s enhanced fraud protection pilot analyzes and automatically blocks the installation of apps that may use sensitive permissions frequently abused for financial fraud when the user attempts to install the app from an Internet-sideloading source (web browsers, messaging apps, or file managers).

Building on the success of our initial pilot in partnership with the Cyber Security Agency of Singapore (CSA), additional enhanced fraud protection pilots are now active in nine regions – Brazil, Hong Kong, India, Kenya, Nigeria, Philippines, South Africa, Thailand, and Vietnam.

In 2024, Google Play Protect’s enhanced fraud protection pilots have shielded 10 million devices from over 36 million risky installation attempts, encompassing over 200,000 unique apps.

By piloting these new protections, we can proactively combat emerging threats and refine our solutions to thwart scammers and their increasingly sophisticated fraud attempts. We look forward to continuing to partner with governments, ecosystem partners, and other stakeholders to improve user protections.

App badging to help users find apps they can trust at a glance on Google Play

In 2024, we introduced a new badge for government developers to help users around the world identify official government apps. Government apps are often targets of impersonation due to the highly sensitive nature of the data users provide, giving bad actors the ability to steal identities and commit financial fraud. Badging verified government apps is an important step in helping connect people with safe, high-quality, useful, and relevant experiences. We partner closely with global governments and are already exploring ways to build on this work.

We also recently introduced a new badge to help Google Play users discover VPN apps that take extra steps to demonstrate their strong commitment to security. We allow developers who adhere to Play safety and security guidelines and have passed an additional independent Mobile Application Security Assessment (MASA) to display a dedicated badge in the Play Store to highlight their increased commitment to safety.

Collaborating to advance app security standards

In addition to our partnerships with governments, developers, and other stakeholders, we also worked with our industry peers to protect the entire app ecosystem for everyone. The App Defense Alliance, in partnership with fellow steering committee members Microsoft and Meta, recently launched the ADA Application Security Assessment (ASA) v1.0, a new standard to help developers build more secure mobile, web, and cloud applications. This standard provides clear guidance on protecting sensitive data, defending against cyberattacks, and ultimately, strengthening user trust. This marks a significant step forward in establishing industry-wide security best practices for application development.

All developers are encouraged to review and comply with the new mobile security standard. You’ll see this standard in action for all carrier apps pre-installed on future Pixel phone models.

Looking ahead


This year, we’ll continue to protect the Android and Google Play ecosystem, building on these tools and resources in response to user and developer feedback and the changing landscape. As always, we’ll keep empowering developers to build safer apps more easily, streamline their policy experience, and protect their businesses and users from bad actors.


1 Based on Google Play Protect 2024 internal data.

Today, people around the world rely on their mobile devices to help them stay connected with friends and family, manage finances, keep track of healthcare information and more – all from their fingertips. But a stolen device in the wrong hands can expose sensitive data, leaving you vulnerable to identity theft, financial fraud and privacy breaches.

This is why we recently launched Android theft protection, a comprehensive suite of features designed to protect you and your data at every stage – before, during, and after device theft. As part of our commitment to help you stay safe on Android, we’re expanding and enhancing these features to deliver even more robust protection to more users around the world.

Identity Check rolling out to Pixel and Samsung One UI 7 devices

We’re officially launching Identity Check, first on Pixel and Samsung Galaxy devices eligible for One UI 71, to provide better protection for your critical account and device settings. When you turn on Identity Check, your device will require explicit biometric authentication to access certain sensitive resources when you’re outside of trusted locations. Identity Check also enables enhanced protection for Google Accounts on all supported devices and additional security for Samsung Accounts on One UI 7 eligible Galaxy devices, making it much more difficult for an unauthorized attacker to take over accounts signed in on the device.

As part of enabling Identity Check, you can designate one or more trusted locations. When you’re outside of these trusted places, biometric authentication will be required to access critical account and device settings, like changing your device PIN or biometrics, disabling theft protection, or accessing Passkeys.

Identity Check gives you more peace of mind that your most sensitive device assets are protected against unauthorized access, even if a thief or bad actor manages to learn your device PIN.

Identity Check is rolling out now to Pixel devices with Android 15 and will be available on One UI 7 eligible Galaxy devices in the coming weeks. It will roll out to supported Android devices from other manufacturers later this year.

Theft Detection Lock: expanding AI-powered protection to more users

One of the top theft protection features introduced last year was Theft Detection Lock, which uses an on-device AI-powered algorithm to help detect when your phone may be forcibly taken from you. If the machine learning algorithm detects a potential theft attempt on your unlocked device, it locks your screen to keep thieves out.

Theft Detection Lock is now fully rolled out to Android 10+ phones2 around the world.

Protecting your Android device from theft

We’re collaborating with the GSMA and industry experts to combat mobile device theft by sharing information, tools and prevention techniques. Stay tuned for an upcoming GSMA white paper, developed in partnership with the mobile industry, with more information on protecting yourself and your organization from device theft.

With the addition of Identity Check and the ongoing enhancements to our existing features, Android offers a robust and comprehensive set of tools to protect your devices and your data from theft. We’re dedicated to providing you with peace of mind, knowing your personal information is safe and secure.

You can turn on the new Android theft features by clicking here on a supported Android device. Learn more about our theft protection features by visiting our help center.

Notes


  1. Timing, availability and feature names may vary in One UI 7. 

  2. With the exclusion for Android Go smartphones 

Today, we are announcing the availability of Vanir, a new open-source security patch validation tool. Introduced at Android Bootcamp in April, Vanir gives Android platform developers the power to quickly and efficiently scan their custom platform code for missing security patches and identify applicable available patches. Vanir significantly accelerates patch validation by automating this process, allowing OEMs to ensure devices are protected with critical security updates much faster than traditional methods. This strengthens the security of the Android ecosystem, helping to keep Android users around the world safe.

By open-sourcing Vanir, we aim to empower the broader security community to contribute to and benefit from this tool, enabling wider adoption and ultimately improving security across various ecosystems. While initially designed for Android, Vanir can be easily adapted to other ecosystems with relatively small modifications, making it a versatile tool for enhancing software security across the board. In collaboration with the Google Open Source Security Team, we have incorporated feedback from our early adopters to improve Vanir and make it more useful for security professionals. This tool is now available for you to start developing on top of, and integrating into, your systems.

The need for Vanir

The Android ecosystem relies on a multi-stage process for vulnerability mitigation. When a new vulnerability is discovered, upstream AOSP developers create and release upstream patches. The downstream device and chip manufacturers then assess the impact on their specific devices and backport the necessary fixes. This process, while effective, can present scalability challenges, especially for manufacturers managing a diverse range of devices and old models with complex update histories. Managing patch coverage across diverse and customized devices often requires considerable effort due to the manual nature of backporting.

To streamline the vital security workflow, we developed Vanir. Vanir provides a scalable and sustainable solution for security patch adoption and validation, helping to ensure Android devices receive timely protection against potential threats.

The power of Vanir

Source-code-based static analysis

Vanir’s first-of-its-kind approach to Android security patch validation uses source-code-based static analysis to directly compare the target source code against known vulnerable code patterns. Vanir does not rely on traditional metadata-based validation mechanisms, such as version numbers, repository history and build configs, which can be prone to errors. This unique approach enables Vanir to analyze entire codebases with full history, individual files, or even partial code snippets.

A main focus of Vanir is to automate the time consuming and costly process of identifying missing security patches in the open source software ecosystem. During the early development of Vanir, it became clear that manually identifying a high-volume of missing patches is not only labor intensive but also can leave user devices inadvertently exposed to known vulnerabilities for a period of time. To address this, Vanir utilizes novel automatic signature refinement techniques and multiple pattern analysis algorithms, inspired by the vulnerable code clone detection algorithms proposed by Jang et al. [1] and Kim et al. [2]. These algorithms have low false-alarm rates and can effectively handle broad classes of code changes that might appear in code patch processes. In fact, based on our 2-year operation of Vanir, only 2.72% of signatures triggered false alarms. This allows Vanir to efficiently find missing patches, even with code changes, while minimizing unnecessary alerts and manual review efforts.

Vanir’s source-code-based approach also enables rapid scaling across any ecosystem. It can generate signatures for any source files written in supported languages. Vanir’s signature generator automatically generates, tests, and refines these signatures, allowing users to quickly create signatures for new vulnerabilities in any ecosystem simply by providing source files with security patches.

Android’s successful use of Vanir highlights its efficiency compared to traditional patch verification methods. A single engineer used Vanir to generate signatures for over 150 vulnerabilities and verify missing security patches across its downstream branches – all within just five days.

Vanir for Android

Currently Vanir supports C/C++ and Java targets and covers 95% of Android kernel and userspace CVEs with public security patches. Google Android Security team consistently incorporates the latest CVEs into Vanir’s coverage to provide a complete picture of the Android ecosystem’s patch adoption risk profile.

The Vanir signatures for Android vulnerabilities are published through the Open Source Vulnerabilities (OSV) database. This allows Vanir users to seamlessly protect their codebases against latest Android vulnerabilities without any additional updates. Currently, there are over 2,000 Android vulnerabilities in OSV, and finishing scanning an entire Android source tree can take 10-20 minutes with a modern PC.

Flexible integration, adoption and expansion.

Vanir is developed not only as a standalone application but also as a Python library. Users who want to integrate automated patch verification processes with their continuous build or test chain may easily achieve it by wiring their build integration tool with Vanir scanner libraries. For instance, Vanir is integrated with a continuous testing pipeline in Google, ensuring all security patches are adopted in ever-evolving Android codebase and their first-party downstream branches.

Vanir is also fully open-sourced, and under BSD-3 license. As Vanir is not fundamentally limited to the Android ecosystem, you may easily adopt Vanir for the ecosystem that you want to protect by making relatively small modifications in Vanir. In addition, since Vanir’s underlying algorithm is not limited to security patch validation, you may modify the source and use it for different purposes such as licensed code detection or code clone detection. The Android Security team welcomes your contributions to Vanir for any direction that may expand its capability and scope. You can also contribute to Vanir by providing vulnerability data with Vanir signatures to OSV.

Vanir Results

Since early last year, we have partnered with several Android OEMs to test the tool’s effectiveness. Internally we have been able to integrate the tool into our build system continuously testing against over 1,300 vulnerabilities. Currently Vanir covers 95% of all Android, Wear, and Pixel vulnerabilities with public fixes across Android Kernel and Userspace. It has a 97% accuracy rate, which has saved our internal teams over 500 hours to date in patch fix time.

Next steps

We are happy to announce that Vanir is now available for public use. Vanir is not technically limited to Android, and we are also actively exploring problems that Vanir may help address, such as general C/C++ dependency management via integration with OSV-scanner. If you are interested in using or contributing to Vanir, please visit github.com/google/vanir. Please join our public community to submit your feedback and questions on the tool. 

We look forward to working with you on Vanir!

Notes

[1] J. Jang, A. Agrawal and D. Brumley, “ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions,” 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 2012, pp. 48-62, doi: 10.1109/SP.2012.13.

[2] S. Kim, S. Woo, H. Lee and H. Oh, “VUDDY: A Scalable Approach for Vulnerable Code Clone Discovery,” 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017, pp. 595-614, doi: 10.1109/SP.2017.62.

User safety is at the heart of everything we do at Google. Our mission to make technology helpful for everyone means building features that protect you while keeping your privacy top of mind. From Gmail’s defenses that stop more than 99.9% of spam, phishing and malware, to Google Messages’ advanced security that protects users from 2 billion suspicious messages a month and beyond, we’re constantly developing and expanding protection features that help keep you safe.

We’re introducing two new real-time protection features that enhance your safety, all while safeguarding your privacy: Scam Detection in Phone by Google to protect you from scams and fraud, and Google Play Protect live threat detection with real-time alerts to protect you from malware and dangerous apps.

These new security features are available first on Pixel, and are coming soon to more Android devices.

More intelligent AI-powered protection against scams

Scammers steal over $1 trillion dollars a year from people, and phone calls are their favorite way to do it. Even more alarming, scam calls are evolving, becoming increasingly more sophisticated, damaging and harder to identify. That’s why we’re using the best of Google AI to identify and stop scams before they can do harm with Scam Detection.

Real-time protection, built with your privacy in mind.

  • Real-time defense, right on your device: Scam Detection uses powerful on-device AI to notify you of a potential scam call happening in real-time by detecting conversation patterns commonly associated with scams. For example, if a caller claims to be from your bank and asks you to urgently transfer funds due to an alleged account breach, Scam Detection will process the call to determine whether the call is likely spam and, if so, can provide an audio and haptic alert and visual warning that the call may be a scam.
  • Private by design, you’re always in control: We’ve built Scam Detection to protect your privacy and ensure you’re always in control of your data. Scam Detection is off by default, and you can decide whether you want to activate it for future calls. At any time, you can turn it off for all calls in the Phone app Settings, or during a particular call. The AI detection model and processing are fully on-device, which means that no conversation audio or transcription is stored on the device, sent to Google servers or anywhere else, or retrievable after the call.
  • Cutting-edge AI protection, now on more Pixel phones: Gemini Nano, our advanced on-device AI model, powers Scam Detection on Pixel 9 series devices. As part of our commitment to bring powerful AI features to even more devices, this AI-powered protection is available to Pixel 6+ users thanks to other robust Google on-device machine learning models.

We’re now rolling out Scam Detection to English-speaking Phone by Google public beta users in the U.S. with a Pixel 6 or newer device.

To provide feedback on your experience, please click on Phone by Google App -> Menu -> Help & Feedback -> Send Feedback. We look forward to learning from this beta and your feedback, and we’ll share more about Scam Detection in the months ahead.

More real-time alerts to protect you from bad apps

Google Play Protect works non-stop to protect you in real-time from malware and unsafe apps. Play Protect analyzes behavioral signals related to the use of sensitive permissions and interactions with other apps and services.

With live threat detection, if a harmful app is found, you’ll now receive a real-time alert, allowing you to take immediate action to protect your device. By looking at actual activity patterns of apps, live threat detection can now find malicious apps that try extra hard to hide their behavior or lie dormant for a time before engaging in suspicious activity.

At launch, live threat detection will focus on stalkerware, code that may collect personal or sensitive data for monitoring purposes without user consent, and we will explore expanding its detection to other types of harmful apps in the future. All of this protection happens on your device in a privacy preserving way through Private Compute Core, which allows us to protect users without collecting data.

Live threat detection with real-time alerts in Google Play Protect are now available on Pixel 6+ devices and will be coming to additional phone makers in the coming months.

Every day, over a billion people use Google Messages to communicate. That’s why we’ve made security a top priority, building in powerful on-device, AI-powered filters and advanced security that protects users from 2 billion suspicious messages a month. With end-to-end encrypted1 RCS conversations, you can communicate privately with other Google Messages RCS users. And we’re not stopping there. We’re committed to constantly developing new controls and features to make your conversations on Google Messages even more secure and private.

As part of cybersecurity awareness month, we’re sharing five new protections to help keep you safe while using Google Messages on Android:

  1. Enhanced detection protects you from package delivery and job scams. Google Messages is adding new protections against scam texts that may seem harmless at first but can eventually lead to fraud. For Google Messages beta users2, we’re rolling out enhanced scam detection, with improved analysis of scammy texts, starting with a focus on package delivery and job seeking messages. When Google Messages suspects a potential scam text, it will automatically move the message into your spam folder or warn you. Google Messages uses on-device machine learning models to classify these scams, so your conversations stay private and the content is never sent to Google unless you report spam. We’re rolling this enhancement out now to Google Messages beta users who have spam protection enabled.
  2. Intelligent warnings alert you about potentially dangerous links. In the past year, we’ve been piloting more protections for Google Messages users when they receive text messages with potentially dangerous links. In India, Thailand, Malaysia and Singapore, Google Messages warns users when they get a link from unknown senders and blocks messages with links from suspicious senders. We’re in the process of expanding this feature globally later this year.
  3. Controls to turn off messages from unknown international senders. In some cases, scam text messages come from international numbers. Soon, you will be able to automatically hide messages from international senders who are not existing contacts so you don’t have to interact with them. If enabled, messages from international non-contacts will automatically be moved to the “Spam & blocked” folder. This feature will roll out first as a pilot in Singapore later this year before we look at expanding to more countries.
  4. Sensitive Content Warnings give you control over seeing and sending images that may contain nudity. At Google, we aim to provide users with a variety of ways to protect themselves against unwanted content, while keeping them in control of their data. This is why we’re introducing Sensitive Content Warnings for Google Messages.

    Sensitive Content Warnings is an optional feature that blurs images that may contain nudity before viewing, and then prompts with a “speed bump” that contains help-finding resources and options, including to view the content. When the feature is enabled, and an image that may contain nudity is about to be sent or forwarded, it also provides a speed bump to remind users of the risks of sending nude imagery and preventing accidental shares.

    All of this happens on-device to protect your privacy and keep end-to-end encrypted message content private to only sender and recipient. Sensitive Content Warnings doesn’t allow Google access to the contents of your images, nor does Google know that nudity may have been detected. This feature is opt-in for adults, managed via Android Settings, and is opt-out for users under 18 years of age. Sensitive Content Warnings will be rolling out to Android 9+ devices including Android Go devices3 with Google Messages in the coming months.

  5. More confirmation about who you’re messaging. To help you avoid sophisticated messaging threats where an attacker tries to impersonate one of your contacts, we’re working to add a contact verifying feature to Android. This new feature will allow you to verify your contacts’ public keys so you can confirm you’re communicating with the person you intend to message. We’re creating a unified system for public key verification across different apps, which you can verify through QR code scanning or number comparison. This feature will be launching next year for Android 9+ devices, with support for messaging apps including Google Messages.

    These are just some of the new and upcoming features that you can use to better protect yourself when sending and receiving messages. Download Google Messages from the Google Play Store to enjoy these protections and controls and learn more about Google Messages here.

    Notes


    1. End-to-end encryption is currently available between Google Messages users. Availability of RCS varies by region and carrier. 

    2. Availability of features may vary by market and device. Sign up for beta testing and a data plan may be required.  

    3. Requires 2 GB of RAM. 

Janine Roberta Ferreira was driving home from work in São Paulo when she stopped at a traffic light. A man suddenly appeared and broke the window of her unlocked car, grabbing her phone. She struggled with him for a moment before he wrestled the phone away and ran off. The incident left her deeply shaken. Not only was she saddened at the loss of precious data, like pictures of her nephew, but she also felt vulnerable knowing her banking information was on her phone that was just stolen by a thief.

Situations like Janine’s highlighted the need for a comprehensive solution to phone theft that exceeded existing tools on any platform. Phone theft is a widespread concern in many countries – 97 phones are robbed or stolen every hour in Brazil. The GSM Association reports millions of devices stolen every year, and the numbers continue to grow.

With our phones becoming increasingly central to storing sensitive data, like payment information and personal details, losing one can be an unsettling experience. That’s why we developed and thoroughly beta tested, a full suite of features designed to protect you and your data at every stage – before, during, and after device theft.

These advanced theft protection features are now available to users around the world through Android 15 and a Google Play Services update (Android 10+ devices).

AI-powered protection for your device the moment it is stolen

Theft Detection Lock uses powerful AI to proactively protect you at the moment of a theft attempt. By using on-device machine learning, Theft Detection Lock is able to analyze various device signals to detect potential theft attempts. If the algorithm detects a potential theft attempt on your unlocked device, it locks your screen to keep thieves out.

To protect your sensitive data if your phone is stolen, Theft Detection Lock uses device sensors to identify theft attempts. We’re working hard to bring this feature to as many devices as possible. This feature is rolling out gradually to ensure compatibility with various devices, starting today with Android devices that cover 90% of active users worldwide. Check your theft protection settings page periodically to see if your device is currently supported.

In addition to Theft Detection Lock, Offline Device Lock protects you if a thief tries to take your device offline to extract data or avoid a remote wipe via Android’s Find My Device. If an unlocked device goes offline for prolonged periods, this feature locks the screen to ensure your phone can’t be used in the hands of a thief.

If your Android device does become lost or stolen, Remote Lock can quickly help you secure it. Even if you can’t remember your Google account credentials in the moment of theft, you can use any device to visit Android.com/lock and lock your phone with just a verified phone number. Remote Lock secures your device while you regain access through Android’s Find My Device – which lets you secure, locate or remotely wipe your device. As a security best practice, we always recommend backing up your device on a continuous basis, so remotely wiping your device is not an issue.

These features are now available on most Android 10+ devices1 via a Google Play Services update and must be enabled in settings.

Advanced security to deter theft before it happens

Android 15 introduces new security features to deter theft before it happens by making it harder for thieves to access sensitive settings, apps, or reset your device for resale:

  • Changes to sensitive settings like Find My Device now require your PIN, password, or biometric authentication.
  • Multiple failed login attempts, which could be a sign that a thief is trying to guess your password, will lock down your device, preventing unauthorized access.
  • And enhanced factory reset protection makes it even harder for thieves to reset your device without your Google account credentials, significantly reducing its resale value and protecting your data.

Later this year, we’ll launch Identity Check, an opt-in feature that will add an extra layer of protection by requiring biometric authentication when accessing critical Google account and device settings, like changing your PIN, disabling theft protection, or accessing Passkeys from an untrusted location. This helps prevent unauthorized access even if your device PIN is compromised.

Real-world protection for billions of Android users

By integrating advanced technology like AI and biometric authentication, we’re making Android devices less appealing targets for thieves to give you greater peace of mind. These theft protection features are just one example of how Android is working to provide real-world protection for everyone. We’re dedicated to working with our partners around the world to continuously improve Android security and help you and your data stay safe.

You can turn on the new Android theft features by clicking here on a supported Android device. Learn more about our theft protection features by visiting our help center.

Notes


  1. Android Go smartphones, tablets and wearables are not supported