Holiday travel is back with a vengeance this year. Set yourself up for a cyber-safe and hassle-free trip with our checklist.

The post Traveling for the holidays? Stay cyber‑safe with these tips appeared first on WeLiveSecurity

ESET researchers discovered a spearphishing campaign targeting Japanese political entities a few weeks before the House of Councillors elections, and in the process uncovered a previously undescribed MirrorFace credential stealer

The post Unmasking MirrorFace: Operation LiberalFace targeting Japanese political entities appeared first on WeLiveSecurity

Think outside the (gift) box. Here are a few ideas for security and privacy gifts to get for your relatives – or even for yourself. Some don’t cost a penny!

The post Top tips for security‑ and privacy‑enhancing holiday gifts appeared first on WeLiveSecurity

ESET experts offer their reflections on what the continued blurring of boundaries between different spheres of life means for our human and social experience – and especially our cybersecurity and privacy

The post Cybersecurity Trends 2023: Securing our hybrid lives appeared first on WeLiveSecurity

ESET researchers uncover a new wiper and its execution tool, both attributed to the Iran-aligned Agrius APT group

The post Diamond industry under attack – Week in security with Tony Anscombe appeared first on WeLiveSecurity

Xenomorph pilfers victims’ login credentials for banking, payment, social media, cryptocurrency and other apps with valuable data

The post Xenomorph: What to know about this Android banking trojan appeared first on WeLiveSecurity

We care deeply about privacy. We also know that trust is built by transparency. This blog, and the technical paper reference within, is an example of that commitment: we describe an important new Android privacy infrastructure called Private Compute Core (PCC).

Some of our most exciting machine learning features use continuous sensing data — information from the microphone, camera, and screen. These features keep you safe, help you communicate, and facilitate stronger connections with people you care about. To unlock this new generation of innovative concepts, we built a specialized sandbox to privately process and protect this data.

Android Private Compute Core

PCC is a secure, isolated data processing environment inside of the Android operating system that gives you control of the data inside, such as deciding if, how, and when it is shared with others. This way, PCC can enable features like Live Translate without sharing continuous sensing data with service providers, including Google.

PCC is part of Protected Computing, a toolkit of technologies that transform how, when, and where data is processed to technically ensure its privacy and safety. For example, by employing cloud enclaves, edge processing, or end-to-end encryption we ensure sensitive data remains in exclusive control of the user.

How Private Compute Core works

PCC is designed to enable innovative features while keeping the data needed for them confidential from other subsystems. We do this by using techniques such as limiting Interprocess Communications (IPC) binds and using isolated processes. These are included as part of the Android Open Source Project and controlled by publicly available surfaces, such as Android framework APIs. For features that run inside PCC, continuous sensing data is processed safely and seamlessly while keeping it confidential.

To stay useful, any machine learning feature has to get better over time. To keep the models that power PCC features up to date, while still keeping the data private, we leverage federated learning and analytics. Network calls to improve the performance of these models can be monitored using Private Compute Services.

Let us show you our work

The publicly-verifiable architectures in PCC demonstrate how we strive to deliver confidentiality and control, and do it in a way that is verifiable and visible to users. In addition to this blog, we provide this transparency through public documentation and open-source code — we hope you’ll have a look below.

To explain in even more detail, we’ve published a technical whitepaper for researchers and interested members of the community. In it, we describe data protections in-depth, the processes and mechanisms we’ve built, and include diagrams of the privacy structures for continuous sensing features.

Private Compute Services was recently open-sourced as well, and we invite our Android community to inspect the code that controls the data management and egress policies. We hope you’ll examine and report back on PCC’s implementation, so that our own documentation is not the only source of analysis.

Our commitment to transparency

Being transparent and engaged with users, developers, researchers, and technologists around the world is part of what makes Android special and, we think, more trustworthy. The paradigm of distributed trust, where credibility is built up from verification by multiple trusted sources, continues to extend this core value. Open sourcing the mechanisms for data protection and processes is one step towards making privacy verifiable. The next step is verification by the community — and we hope you’ll join in.

We’ll continue sharing our progress and look forward to hearing feedback from our users and community on the evolution of Private Compute Core and data privacy at Google.

ESET researchers analyzed a supply-chain attack abusing an Israeli software developer to deploy Fantasy, Agrius’s new wiper, with victims including the diamond industry

The post Fantasy – a new Agrius wiper deployed through a supply‑chain attack appeared first on WeLiveSecurity

As a follow-up to a previous blog post about How Hash-Based Safe Browsing Works in Google Chrome, we wanted to provide more details about Safe Browsing’s Enhanced Protection mode in Chrome. Specifically, how it came about, the protections that are offered and what it means for your data.

Security and privacy have always been top of mind for Chrome. Our goal is to make security effortless for you while browsing the web, so that you can go about your day without having to worry about the links that you click on or the files that you download. This is why Safe Browsing’s phishing and malware protections have been a core part of Chrome since 2007. You may have seen these in action if you have ever come across one of our red warning pages.

We show these warnings whenever we believe a site that you are trying to visit or file that you are trying to download might put you at risk for an attack. To give you a better understanding of how the Enhanced Protection mode in Safe Browsing provides the strongest level of defense it’s useful to know what is offered in Standard Protection.

Standard Protection

Enabled by default in Chrome, Standard Protection was designed to be privacy preserving at its core by using hash-based checks. This has been effective at protecting users by warning millions of users about dangerous websites. However, hash-based checks are inherently limited as they rely on lookups to a list of known bad sites. We see malicious actors moving fast and constantly evolving their tactics to avoid detection using sophisticated techniques. To counter this, we created a stronger and more customized level of protection that we could offer to users. To this end, we launched Enhanced Protection in 2020, which builds upon the Standard Protection mode in Safe Browsing to keep you safer.

Enhanced Protection

This is the fastest and strongest level of protection against dangerous sites and downloads that Safe Browsing offers in Chrome. It enables more advanced detection techniques that adapt quickly as malicious activity evolves. As a result, Enhanced Protection users are phished 20-35% less than users on Standard Protection. A few of these features include:

  • Real time URL checks: By checking with Google Safe Browsing’s servers in real time before navigating to an uncommon site you’re visiting, Chrome provides the best protection against dangerous sites and uses advanced machine learning models to continuously stay up to date.
  • File checks before downloading: In addition to Chrome’s standard checks of downloaded files, Enhanced Protection users can choose to upload suspicious files to be scanned by Google Safe Browsing’s full suite of malware detection technology before opening the file. This helps catch brand new malware that Safe Browsing has not scanned before or dangerous files hosted on a brand new site.
  • More advanced vision-based phishing detection: To better detect phishing and dangerous sites for Enhanced Protection users, Chrome performs basic client-side checks on the web page to determine if it is suspicious. For pages deemed suspicious, Chrome sends a small set of visual features derived from the page to Google’s Safe Browsing servers for additional phishing classification using computer vision. This helps Chrome more accurately recognize dangerous sites, and can warn other users before they visit the site.

    User data privacy and security

    By opting into Enhanced Protection, you are sharing additional data with Safe Browsing systems that allow us to offer better and faster security both for you, and for all users online. Ensuring user privacy is of utmost importance for us and we go through great lengths to anonymize as much of the data as possible. This data is only used for security purposes and only retained for a short period of time. As threats evolve we will continuously add and improve our existing protections for Enhanced Protection users. These features go through extensive privacy reviews to ensure that your privacy continues to be prioritized while still providing you the highest level of security possible.

    How to enable

    Safe Browsing’s Enhanced Protection is currently available for all desktop platforms, Android devices and now iOS mobile devices. It can be enabled by navigating to the Privacy and Security option located in Chrome settings.

    For enterprise admins, you have the option of enabling Enhanced Safe Browsing on your managed devices using the SafeBrowsingProtectionLevel policy and in the Admin Console.

    For more details and updates about Safe Browsing and its Enhanced Protection mode, please visit our Google Safe Browsing website and follow the Google Security Blog for updates on new features.

Forget pests for a minute. Modern farms also face another – and more insidious – breed of threat.

The post Tractors vs. threat actors: How to hack a farm appeared first on WeLiveSecurity