Do you have online accounts you haven’t used in years? If so, a bit of digital spring cleaning might be in order.

Note: Google Chrome communicated its removal of default trust of Chunghwa Telecom and Netlock in the public forum on May 30, 2025.

The Chrome Root Program Policy states that Certification Authority (CA) certificates included in the Chrome Root Store must provide value to Chrome end users that exceeds the risk of their continued inclusion. It also describes many of the factors we consider significant when CA Owners disclose and respond to incidents. When things don’t go right, we expect CA Owners to commit to meaningful and demonstrable change resulting in evidenced continuous improvement.

Chrome’s confidence in the reliability of Chunghwa Telecom and Netlock as CA Owners included in the Chrome Root Store has diminished due to patterns of concerning behavior observed over the past year. These patterns represent a loss of integrity and fall short of expectations, eroding trust in these CA Owners as publicly-trusted certificate issuers trusted by default in Chrome. To safeguard Chrome’s users, and preserve the integrity of the Chrome Root Store, we are taking the following action.

Upcoming change in Chrome 139 and higher:

This approach attempts to minimize disruption to existing subscribers using a previously announced Chrome feature to remove default trust based on the SCTs in certificates.

Additionally, should a Chrome user or enterprise explicitly trust any of the above certificates on a platform and version of Chrome relying on the Chrome Root Store (e.g., explicit trust is conveyed through a Group Policy Object on Windows), the SCT-based constraints described above will be overridden and certificates will function as they do today.

To further minimize risk of disruption, website operators are encouraged to review the “Frequently Asked Questions” listed below.

Why is Chrome taking action?

CAs serve a privileged and trusted role on the internet that underpin encrypted connections between browsers and websites. With this tremendous responsibility comes an expectation of adhering to reasonable and consensus-driven security and compliance expectations, including those defined by the CA/Browser Forum TLS Baseline Requirements.

Over the past several months and years, we have observed a pattern of compliance failures, unmet improvement commitments, and the absence of tangible, measurable progress in response to publicly disclosed incident reports. When these factors are considered in aggregate and considered against the inherent risk each publicly-trusted CA poses to the internet, continued public trust is no longer justified.

When will this action happen?

The action of Chrome, by default, no longer trusting new TLS certificates issued by these CAs will begin on approximately August 1, 2025, affecting certificates issued at that point or later.

This action will occur in Versions of Chrome 139 and greater on Windows, macOS, ChromeOS, Android, and Linux. Apple policies prevent the Chrome Certificate Verifier and corresponding Chrome Root Store from being used on Chrome for iOS.

What is the user impact of this action?

By default, Chrome users in the above populations who navigate to a website serving a certificate from Chunghwa Telecom or Netlock issued after July 31, 2025 will see a full page interstitial similar to this one.

Certificates issued by other CAs are not impacted by this action.

How can a website operator tell if their website is affected?

Website operators can determine if they are affected by this action by using the Chrome Certificate Viewer.

Use the Chrome Certificate Viewer

  • Navigate to a website (e.g., https://www.google.com)
  • Click the “Tune” icon
  • Click “Connection is Secure”
  • Click “Certificate is Valid” (the Chrome Certificate Viewer will open)
    • Website owner action is not required, if the “Organization (O)” field listed beneath the “Issued By” heading does not contain “Chunghwa Telecom” , “行政院” , “NETLOCK Ltd.”, or “NETLOCK Kft.”
    • Website owner action is required, if the “Organization (O)” field listed beneath the “Issued By” heading contains “Chunghwa Telecom” , “行政院” , “NETLOCK Ltd.”, or “NETLOCK Kft.”

What does an affected website operator do?

We recommend that affected website operators transition to a new publicly-trusted CA Owner as soon as reasonably possible. To avoid adverse website user impact, action must be completed before the existing certificate(s) expire if expiry is planned to take place after July 31, 2025.

While website operators could delay the impact of blocking action by choosing to collect and install a new TLS certificate issued from Chunghwa Telecom or Netlock before Chrome’s blocking action begins on August 1, 2025, website operators will inevitably need to collect and install a new TLS certificate from one of the many other CAs included in the Chrome Root Store.

Can I test these changes before they take effect?

Yes.

A command-line flag was added beginning in Chrome 128 that allows administrators and power users to simulate the effect of an SCTNotAfter distrust constraint as described in this blog post.

How to: Simulate an SCTNotAfter distrust

1. Close all open versions of Chrome

2. Start Chrome using the following command-line flag, substituting variables described below with actual values

–test-crs-constraints=$[Comma Separated List of Trust Anchor Certificate SHA256 Hashes]:sctnotafter=$[epoch_timestamp]

3. Evaluate the effects of the flag with test websites

Learn more about command-line flags here.

I use affected certificates for my internal enterprise network, do I need to do anything?

Beginning in Chrome 127, enterprises can override Chrome Root Store constraints like those described in this blog post by installing the corresponding root CA certificate as a locally-trusted root on the platform Chrome is running (e.g., installed in the Microsoft Certificate Store as a Trusted Root CA).

How do enterprises add a CA as locally-trusted?

Customer organizations should use this enterprise policy or defer to platform provider guidance for trusting root CA certificates.

What about other Google products?

Other Google product team updates may be made available in the future.

From a flurry of attacks targeting UK retailers to campaigns corralling end-of-life routers into botnets, it’s a wrap on another month filled with impactful cybersecurity news

Cybercriminals impersonate the trusted e-signature brand and send fake Docusign notifications to trick people into giving away their personal or corporate data

Google Quantum AI’s mission is to build best in class quantum computing for otherwise unsolvable problems. For decades the quantum and security communities have also known that large-scale quantum computers will at some point in the future likely be able to break many of today’s secure public key cryptography algorithms, such as Rivest–Shamir–Adleman (RSA). Google has long worked with the U.S. National Institute of Standards and Technology (NIST) and others in government, industry, and academia to develop and transition to post-quantum cryptography (PQC), which is expected to be resistant to quantum computing attacks. As quantum computing technology continues to advance, ongoing multi-stakeholder collaboration and action on PQC is critical.

In order to plan for the transition from today’s cryptosystems to an era of PQC, it’s important the size and performance of a future quantum computer that could likely break current cryptography algorithms is carefully characterized. Yesterday, we published a preprint demonstrating that 2048-bit RSA encryption could theoretically be broken by a quantum computer with 1 million noisy qubits running for one week. This is a 20-fold decrease in the number of qubits from our previous estimate, published in 2019. Notably, quantum computers with relevant error rates currently have on the order of only 100 to 1000 qubits, and the National Institute of Standards and Technology (NIST) recently released standard PQC algorithms that are expected to be resistant to future large-scale quantum computers. However, this new result does underscore the importance of migrating to these standards in line with NIST recommended timelines

Estimated resources for factoring have been steadily decreasing

Quantum computers break RSA by factoring numbers, using Shor’s algorithm. Since Peter Shor published this algorithm in 1994, the estimated number of qubits needed to run it has steadily decreased. For example, in 2012, it was estimated that a 2048-bit RSA key could be broken by a quantum computer with a billion physical qubits. In 2019, using the same physical assumptions – which consider qubits with a slightly lower error rate than Google Quantum AI’s current quantum computers – the estimate was lowered to 20 million physical qubits.

Historical estimates of the number of physical qubits needed to factor 2048-bit RSA integers.

This result represents a 20-fold decrease compared to our estimate from 2019

The reduction in physical qubit count comes from two sources: better algorithms and better error correction – whereby qubits used by the algorithm (“logical qubits”) are redundantly encoded across many physical qubits, so that errors can be detected and corrected.

On the algorithmic side, the key change is to compute an approximate modular exponentiation rather than an exact one. An algorithm for doing this, while using only small work registers, was discovered in 2024 by Chevignard and Fouque and Schrottenloher. Their algorithm used 1000x more operations than prior work, but we found ways to reduce that overhead down to 2x.

On the error correction side, the key change is tripling the storage density of idle logical qubits by adding a second layer of error correction. Normally more error correction layers means more overhead, but a good combination was discovered by the Google Quantum AI team in 2023. Another notable error correction improvement is using “magic state cultivation”, proposed by the Google Quantum AI team in 2024, to reduce the workspace required for certain basic quantum operations. These error correction improvements aren’t specific to factoring and also reduce the required resources for other quantum computations like in chemistry and materials simulation.

Security implications

NIST recently concluded a PQC competition that resulted in the first set of PQC standards. These algorithms can already be deployed to defend against quantum computers well before a working cryptographically relevant quantum computer is built. 

To assess the security implications of quantum computers, however, it’s instructive to additionally take a closer look at the affected algorithms (see here for a detailed look): RSA and Elliptic Curve Diffie-Hellman. As asymmetric algorithms, they are used for encryption in transit, including encryption for messaging services, as well as digital signatures (widely used to prove the authenticity of documents or software, e.g. the identity of websites). For asymmetric encryption, in particular encryption in transit, the motivation to migrate to PQC is made more urgent due to the fact that an adversary can collect ciphertexts, and later decrypt them once a quantum computer is available, known as a “store now, decrypt later” attack. Google has therefore been encrypting traffic both in Chrome and internally, switching to the standardized version of ML-KEM once it became available. Notably not affected is symmetric cryptography, which is primarily deployed in encryption at rest, and to enable some stateless services.

For signatures, things are more complex. Some signature use cases are similarly urgent, e.g., when public keys are fixed in hardware. In general, the landscape for signatures is mostly remarkable due to the higher complexity of the transition, since signature keys are used in many different places, and since these keys tend to be longer lived than the usually ephemeral encryption keys. Signature keys are therefore harder to replace and much more attractive targets to attack, especially when compute time on a quantum computer is a limited resource. This complexity likewise motivates moving earlier rather than later. To enable this, we have added PQC signature schemes in public preview in Cloud KMS. 

The initial public draft of the NIST internal report on the transition to post-quantum cryptography standards states that vulnerable systems should be deprecated after 2030 and disallowed after 2035. Our work highlights the importance of adhering to this recommended timeline.

More from Google on PQC: https://cloud.google.com/security/resources/post-quantum-cryptography?e=48754805 

ESET Research has been tracking Danabot’s activity since 2018 as part of a global effort that resulted in a major disruption of the malware’s infrastructure

ESET Research shares its findings on the workings of Danabot, an infostealer recently disrupted in a multinational law enforcement operation

The bustling cybercrime enterprise has been dealt a significant blow in a global operation that relied on the expertise of ESET and other technology companies

Our intense monitoring of tens of thousands of malicious samples helped this global disruption operation

ESET Chief Security Evangelist Tony Anscombe highlights key findings from the latest issue of the ESET APT Activity Report